パーフェクトイド理論のネーター化について

伊城 慎之介 群馬工業高等専門学校

第7回情報数理セミナー

2024年8月20日(火)

- Introduction
- Perfectoid towers and their tilts (j.w.w. Nakazato and Shimomoto : based on arXiv:2203.16400v3)
- 3 Perfectoid towers and Homological Conjecture (j.w.w Ishizuka, Nakazato, and Shimomoto: in progress)

Definition (characteristic of local rings)

 (R,\mathfrak{m}) : a local ring

	$\operatorname{char} R$	$\operatorname{char} R/\mathfrak{m}$
equal char 0	0	0
equal char p	p	p
$mixed\ char\ (0,p)$	0	p
mixed char (p^n, p)	p^n	p

Example

- \mathbb{Q} $R = \mathbb{F}_p[\![x_1, \dots, x_d]\!]$ is a ring of characteritic p.
- $R = \mathbb{Z}_p[x_1, \dots, x_d]$ is a ring of characteristic (0, p).
- $R = (\mathbb{Z}/p^n\mathbb{Z})[x_1, \dots, x_d]$ is a ring of characteristic (p^n, p) .

Homological Conjecture (1960s~)

A series of conjectures for modules over a Noeth local ring

What are important tools in studies on commutative ring theory?

- Equal characteristic 0
 → Mod p reduction, Resolution of singularities, etc.
- Equal characteristic p \longrightarrow Frobenius homomorphism, Tight closure, etc.
- Mixed characteristic
 → ???

What are important tools in studies on commutative ring theory?

- Equal characteristic 0
 - \longrightarrow Mod p reduction, Resolution of singularities, etc.
- Equal characteristic p
 - ---> Frobenius homomorphism, Tight closure, etc.
- Mixed characteristic
 - **→** Perfectoid theory.

Fix a prime number p.

Definition (Perfectoid rings)

R: a ring with $\varpi \in R$ s.t. $\varpi^p = pu$ for $u \in R^{\times}$

Suppose : R is ϖ -torsion free.

Then R is a **perfectoid ring** if

- R is p-adically complete and separated (i.e. $\varprojlim_{n>0} R/p^nR \cong R$)
- ② $F_{R/pR}:R/pR\to R/pR\;(x\mapsto x^p)$ is surjective.

Definition (Tilting)

For a (perfectoid) ring R, we define the **tilt** of R as

$$R^{\flat} := \varprojlim \{ \cdots \xrightarrow{F_{R/pR}} R/pR \xrightarrow{F_{R/pR}} R/pR \}.$$

Example

 \mathbb{Z}_p : the ring of $p ext{-adic integers}$

$$\mathbb{Z}_{p}[\widehat{p^{1/p^{\infty}}}] := \bigcup_{n \geq 0} \mathbb{Z}_{p}[p^{1/p^{n}}]$$
 (p -adic completion) is a perfectoid ring.

Moreover,

$$(\widehat{\mathbb{Z}_p[p^{1/p^\infty}]})^{\flat} \cong \mathbb{F}_p[\![t]\!][t^{1/p^\infty}] = \bigcup_{n \geq 0} \mathbb{F}_p[\![t]\!][t^{1/p^n}]$$

Example

$$R := W(k)[x_2, \dots, x_d]$$

where W(k): CDVR in mixed char with perfect residue field k.

$$\widehat{R_{\infty}}:=\bigcup_{n\geq 0}R[p^{1/p^n},\widehat{x_2^{1/p^n}},\dots,x_d^{1/p^n}]$$
 is a perfectoid ring.

Moreover,

$$\widehat{R_{\infty}}^{\flat} \cong \bigcup_{n \geq 0} k[t, x_2, \dots, x_d] \widehat{[t^{1/p^n}, x_2^{1/p^n}, \dots, x_d^{1/p^n}]}$$

Tilting correspondence

$$\left\{ \begin{array}{c} \mathsf{Perfectoid\ rings} \\ \mathsf{(mixed\ char)} \end{array} \right\} \xrightarrow[]{(-)^{\flat}} \left\{ \begin{array}{c} \mathsf{Perfect(oid)\ rings} \\ \mathsf{(positive\ char)} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Perfectoid\ rings} \\ \mathsf{(mixed\ char)} \end{array} \right\}.$$

Remark

Perfectoid rings and their tilts are **not** Noetherian.

Applications of perfectoid theory:

In arithmetic geometry,

- Weight-Monodoromy Conjecture (P. Scholze'12)
- Integral p-adic Hodge theory (Bhatt-Morrow-Scholze'19)
- Purity for flat (étale) cohomology (Cesnavicius-Scholze' 23)

In commutative ring theory,

- Homological Conjecture
 (Y. Andre'16, '20, B. Bhatt'16, Ma-Heitmann'17)
- Singularity theory in mixed characteristic
 (B. Bhatt, L. Ma, K. Schwede, etc. '17~)

Theorem (Cesnavicius-Scholze'23)

 (R,\mathfrak{m}) : a regular local ring,

G : a comm, finite, étale R-group whose order is invertible in R. Then

$$H^i_{\mathfrak{m}}(R,G)_{\mathrm{\acute{e}t}}\cong 0$$
 for $i<2\dim R$.

The idea of the proof by Cesnavicius-Scholze

For simplicity, we may assume

$$R \cong W(k)[x_2, \dots, x_d]$$

where W(k): CDVR and k: perfect.

$$R \longrightarrow R[p^{1/p}, x_2^{1/p}, \dots, x_d^{1/p}] \longrightarrow \cdots \longrightarrow \widehat{R_{\infty}}$$

$$S \longrightarrow S[t^{1/p}, x_2^{1/p}, \dots, x_d^{1/p}] \longrightarrow \cdots \longrightarrow \widehat{R_{\infty}}^{\flat}$$

where $S := k[[t, x_2, \dots, x_d]].$

It suffices to show : $H^i_{(x_1,\dots,x_d)}(S,\mathbb{Z}/\ell\mathbb{Z})_{\text{\'et}}\cong 0$, and it's already known.

$$\begin{split} R & \longrightarrow R[p_1^{1/p}, \dots, x_d^{1/p}] & \longrightarrow \cdots \longrightarrow \widehat{R_{\infty}} \\ & & \downarrow \\ S & \longrightarrow S[t^{1/p}, \dots, x_d^{1/p}] & \longrightarrow \cdots \longrightarrow \widehat{R_{\infty}}^{\flat} \end{split}$$

$$R := W(k)[x_2, \dots, x_d]$$
 (mixed char),

$$S := k[t, x_2, \dots, x_d]$$
 (positive char).

Our Motivation

 $R_0
ightarrow R_1
ightarrow \cdots$: a direct system of Noeth local rings of mixed char,

$$\widehat{R_{\infty}} := \widehat{\varinjlim_{n \geq 0}} \widehat{R_n}$$
: a perfectoid ring.

We want to construct a direct system $S_0 \to S_1 \to \cdots$ of char p > 0 s.t.

$$ullet$$
 $\widehat{S_{\infty}}:=\widehat{\varinjlim_{n>0}}\widehat{S_n}\cong\widehat{R_{\infty}}^{\flat}$, and

• S_n has the same properties as R_n .

Definition (Perfectoid towers) 1/2

R: a ring containing p, I_0 : an ideal of R.

Assume that R is I_0 -torsion free.

$$R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$$
 is a perfectoid tower arising from (R, I_0) .

 $\stackrel{\mathsf{def}}{\Leftrightarrow}$ it's a direct system satisfying the following axioms (a) \sim (f).

- (a) $R_0 = R$ and $p \in I_0$,
- (b) $\overline{t_i}: R_i/I_0R_i \to R_{i+1}/I_0R_{i+1}$ is injective,
- (c) $\operatorname{Im} F_{R_{i+1}/I_0R_{i+1}} \subseteq \operatorname{Im} \overline{t_i}$.

By the axioms (b) and (c), we obtain the following factorization:

 F_i is called the *i*-th Frobenius projection.

Definition (Perfectoid towers) 2/2

- (d) F_i is surjective for any $i \geq 0$,
- (e) R_i is I_0 -adically complete and separated for any $i \geq 0$,
- (f) I_0 is generated by a non-zero divisor, and R_1 contains a principal ideal I_1 that satisfies the following.
 - (f-1) $I_1^p = I_0 R_1$.
 - (f-2) For every $i \ge 0$, $Ker(F_i) = I_1(R_{i+1}/I_0R_{i+1})$.

Definition (Small tilts)

 $R_0 \to R_1 \to R_2 \to \cdots$: a perfectoid tower.

Then the j-th small tilt is defined as

$$R_j^{s,\flat} := \varprojlim \{ \cdots \xrightarrow{F_{j+1}} R_{j+1}/I_0 R_{j+1} \xrightarrow{F_j} R_j/I_0 R_j \}.$$

 $R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$: a perfectoid tower arising from (R_0, I_0) .

Definition

We define

- $t_i^{s,\flat}: R_i^{s,\flat} \to R_{i+1}^{s,\flat}: (x_n)_{n\geq 0} \mapsto (\overline{t_{i+n}}(x_n))_{n\geq 0}.$
- $I_0^{s,\flat} := \operatorname{Ker}(R_0^{s,\flat} \xrightarrow{\pi_0} R_0/I_0R_0).$

Proposition

 $R_0^{s,\flat} \xrightarrow{t_0^{s,\flat}} R_1^{s,\flat} \xrightarrow{t_1^{s,\flat}} \cdots$ is a perfectoid tower arising from $(R_0^{s,\flat}, I_0^{s,\flat})$

mixed char world

positive char world

Example (the ring of p-adic integers)

$$R_0 := \mathbb{Z}_p, \ R_1 := \mathbb{Z}_p[p^{1/p}], \ R_2 := \mathbb{Z}_p[p^{1/p^2}], \ \cdots$$

Then

$$R_0 \xrightarrow{\subseteq} R_1 \xrightarrow{\subseteq} R_2 \xrightarrow{\subseteq} \cdots$$

is a perfectoid tower arising from $(\mathbb{Z}_p,(p))$.

Moreover, $R_0^{s,\flat}\cong \mathbb{F}_p[\![t]\!]$ and $R_n^{s,\flat}\cong \mathbb{F}_p[\![t]\!][t^{1/p^n}].$

$$\mathbb{Z}_{p} \longrightarrow \mathbb{Z}_{p}[p^{1/p}] \longrightarrow \cdots \longrightarrow Z_{p}[p^{1/p^{\infty}}]$$

$$\downarrow (-)^{s.b} \qquad \qquad \downarrow (-)^{b}$$

$$\mathbb{F}_{p}[\![t]\!] \longrightarrow \mathbb{F}_{p}[\![t]\!][t^{1/p}] \longrightarrow \cdots \longrightarrow \mathbb{F}_{p}[\![t]\!][t^{1/p^{\infty}}]$$

Example (formal power series rings over CDVR)

 $R_0 := W(k)[\![x_2,\ldots,x_d]\!]$ (k: perfect), $R_1 := R_0[p^{1/p},x_2^{1/p},\ldots x_d^{1/p}]$,

$$R_0 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow \cdots$$

is a perfectoid tower arising from $(R_0,(p))$.

Moreover, $R_0^{s,b} \cong k[t, x_2, \dots, x_d]$.

Example (Toric case : Gabber–Ramero, I.–Nakazato–Shimomoto)

$$R := \mathbb{Z}_p[\![x, y, z]\!]/(px - yz),$$

$$R_1 := \mathbb{Z}_p[\![p^{1/p}, x^{1/p}, y^{1/p}, z^{1/p}]\!]/(p^{1/p}x^{1/p} - y^{1/p}z^{1/p}),$$

$$R_2 := \mathbb{Z}_p[\![p^{1/p^2}, x^{1/p^2}, y^{1/p^2}, z^{1/p^2}]\!]/(p^{1/p^2}x^{1/p^2} - y^{1/p^2}z^{1/p^2}).$$

Then

$$R_0 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow \cdots$$

is a perfectoid tower arising from $(R_0,(p))$.

Moreover, $R_0^{s,\flat} \cong k[t,x,y,z]/(tx-yz)$.

For a perfectoid tower $R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$, the projection $\pi_0: R_0^{s,b} \to R_0/I_0$ induces

$$R_0^{s,\flat}/I_0^{s,\flat} \xrightarrow{\cong} R_0/I_0.$$

In particular,

Proposition

$$R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$$
 : a perfectoid tower arising from some $(R_0,(p))$.

- R_i : local (resp. Noetherian) \Leftrightarrow so is $R_i^{s,b}$.
- ② If $p^{s,b}$ is a generator of $I_0^{s,b}$, then $p^{s,b}$ is NZD.
- lacksquare R_i is CM (resp. Gorenstein) if and only if so is $R_i^{s, \flat}$.

Theorem

 $R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$: a perfectoid tower arising from some (R_0, I_0) ,

$$\widehat{R_\infty}$$
 : the I_0 -adic completion of $R_\infty:=arinjlim R_i$,

$$\widehat{R_{\infty}^{s,\flat}}$$
 : the $I_0^{s,\flat}$ -adic completion of $R_{\infty}^{s,\flat}:=\varinjlim R_i^{s,\flat}$.

Then

- \bullet $\widehat{R_{\infty}}$ is a perfectoid ring,
- ② The tilt $(\widehat{R_{\infty}})^{\flat}$ is isomorphic to $\widehat{R_{\infty}^{s,\flat}}$. In particular,

Theorem (I.-Nakazato-Shimomoto)

 $R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$: a perfectoid tower of Noeth normal domains, ℓ : a prime different from p,

 $U \subseteq \operatorname{Spec}(R)$: a Zariski-open subset s.t $\operatorname{Spec}(R) \setminus V(I_0) \subseteq U$

 $U^{s,\flat} \subseteq \operatorname{Spec}(R^{s,\flat})$: the corresponding open subset

Assume : $t_j:R_j\to R_{j+1}$ is module-finite whose generic extension is of p-power degree for every $j\geq 0$.

Then, for any fixed $i,n\geq 0$ such that $|H^i(U^{s,\flat}_{\mathrm{\acute{e}t}},\mathbb{Z}/\ell^n\mathbb{Z})|<\infty$,

$$|H^i(U_{\operatorname{\acute{e}t}},\mathbb{Z}/\ell^n\mathbb{Z})| \leq |H^i(U_{\operatorname{\acute{e}t}}^{s,\flat},\mathbb{Z}/\ell^n\mathbb{Z})|.$$

Question

- Open Does the above inequality become the equality?
- ② For a perfectoid tower $R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$, is R_i a domain (resp. normal) \Leftrightarrow so is $R_i^{s,\flat}$?

Homological Conjecture

Definition (Bhatt-Hochster-Ma)

R: a d-dim Noeth local ring,

 $\{M_n\}_{n\geq 0}$: a sequence of f.g. R-modules with $\dim M_n=d$

Then $\{M_n\}_{n\geq 0}$ is a **lim Cohen–Macaulay sequence** if

$$\lim_{n \to \infty} \frac{h_i(\underline{x}; M_n)}{\nu(M_n)} = 0$$

for any system of parameters of R and any $i \ge 1$ where

 $h_i(\underline{x};M_n)$: the length of the Koszul homology of M_n w.r.t \underline{x} ,

 $\nu(M_n)$: the least number of generators of M_n .

Remark

R: a Noetherian local ring, M: a small CM module

Then $\{M_n\}_{n\geq 0}=\{M\}_{n\geq 0}$ is a lim CM sequence of R.

 $\begin{array}{c} \text{Existence of} \\ \text{small CM modules} \end{array} \Longrightarrow \begin{array}{c} \text{Existence of} \\ \text{Iim CM sequences} \end{array}$

Theorem (Bhatt-Hochster-Ma)

If all complete local domains in mixed characteristic with perfect residue class fields have lim CM sequences, then the positivity conjecture is true.

Main Theorem (I.—Ishizuka—Nakazato—Shimomoto)

 ${\cal R}$: a complete Noetherian local domain with perfect residue field.

Suppose that

- there exists a perfectoid tower $R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$ arising from (R_0, I_0) s.t. t_i is finite, and
- $R_0^{s,\flat}$ is a domain.

Then $\{R_n\}_{n\geq 0}$ is a lim Cohen–Macaulay sequence.

Lemma 1 (I.-Ishizuka-Nakazato-Shimomoto)

 (R,\mathfrak{m}) : d-dim Noetherian local ring,

 $\{M_n\}_{n\geq 0}$: a seq of f.g. R-mod satisfying $d=\dim M_n$.

 $x \in \mathfrak{m}$: a parameter element of R which is regular on M_n .

Then $\{M_n\}_{n\geq 0}$ is a lim Cohen–Macaulay sequence.

 $\Leftrightarrow \{M_n/xM_n\}_{n\geq 0}$ is a lim Cohen–Macaulay sequence.

Lemma 2 (Bhatt–Hochster–Ma)

R : a complete Noeth local domain in char p>0 with perfect residue field. $R^{1/p^i}:=\{a^{1/p^i}\mid a\in R\}.$

Then $\{R^{1/p^n}\}_{n\geq 0}$ is a lim CM sequence of R.

Proposition (I.–Nakazato–Shimomoto)

 $R_0 \xrightarrow{t_0} R_1 \xrightarrow{t_1} \cdots$: a perfectoid tower arising from some (R_0, I_0) .

Then

• $R_i^{s,\flat}$ is reduced.

$$R_0^{s,\flat} \xrightarrow{t_0^{s,\flat}} R_1^{s,\flat} \xrightarrow{t_1^{s,\flat}} R_2^{s,\flat} \xrightarrow{t_2^{s,\flat}} \cdots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$R_0^{s,\flat} \longrightarrow (R_0^{s,\flat})^{1/p} \longrightarrow (R_0^{s,\flat})^{1/p^2} \longrightarrow \cdots$$

Question

Does any complete Noetherian local domain in mixed characteristic with perfect residue field have a perfectoid tower?