高々星型特異点をもつアフィン平面の極小コンパクト化について

澤原 雅知 (弘前大学 教育学部)

Remark. In the following weighted dual graphs, we omit this weight (resp. we omit this weight and use the vertex \bullet instead of \circ) if m = -2 (resp. m = -1).

Theorem 0.1. Let (X,Γ) be a minimal compactification of the affine plane \mathbb{C}^2 such that $\operatorname{Sing}(X) \neq \emptyset$, let $\pi: V \to X$ be the minimal resolution, let D be the reduced exceptional divisor of π , and C be the proper transform of Γ by π . Assume that X has at most star-shaped singular points. Then the weighted dual graph of C + D is one of the graphs is given as (n) $(n = 1, \ldots, 7)$ in the following:

$$(1) \qquad (2) \qquad (3) \qquad \overbrace{\hspace{1cm}}^{\ell} \qquad \underbrace{\hspace{1cm}}^{C} \qquad \underbrace{\hspace{1cm}}^{C} \qquad \underbrace{\hspace{1cm}}^{C} \qquad A^{*} \qquad \underbrace{\hspace{1cm}}^{C} \qquad A^{*} \qquad \underbrace{\hspace{1cm}}^{C} \qquad A^{*} \qquad \underbrace{\hspace{1cm}}^{C} \qquad A^{*} \qquad \underbrace{\hspace{1cm}}^{C} \qquad \underbrace{\hspace{1cm}}^$$

Date: 2024/08/20.

where, A is an admissible twig, A* is the adjoint of A, $[b_1, \ldots, b_s]$ is an admissible twig with $b_1 \geq 3$, \underline{B}^* is the adjoint of $[b_1, \ldots, b_s]$ removed the last component, $0 \leq \ell \leq d(A)(nd(A) - d(\overline{A})) - 2$, $m \geq 0$ and $n \geq 2$.

Theorem 0.2. Let (X,Γ) be a minimal compactification of the affine plane \mathbb{C}^2 such that $\operatorname{Sing}(X) \neq \emptyset$, let $\pi: V \to X$ be the minimal resolution, let D be the reduced exceptional divisor of π , and C be the proper transform of Γ by π . Assume that X has at most star-shaped singular points and the canonical divisor K_X is numerically trivial. Then the weighted dual graph of C+D

is given as in the following: where A is an admissible twig, A^* is the adjoint of A, $m \ge 0$ and $n \ge 2$.

FACULTY OF EDUCATION, HIROSAKI UNIVERSITY, BUNKYOCHO 1, HIROSAKI-SHI, AOMORI 036-8560, JAPAN *Email address*: sawahara.masatomo@gmail.com